Blogs

Online embodied interaction: Learning physical interaction design online


Authors: Annika Waern, Andreas Bergqvist, Shuang Feng, Nikolay Georgiev, Karan Manjunath, Alessandra Semeraro, Ruochen Wang, Laia Turmo Vidal
Posted: Mon, August 03, 2020 - 9:22:03

On March 17, 2020, the rector at Uppsala University, Sweden, declared that all teaching would move online, effective immediately. The authors of this blog post were teachers and students in a full-time course on Embodied Interaction, scheduled to start on March 26. This is a design course in which students apply social, spatial, bodily, and material theories to a design project. Here we report on the experience of working with such a project, which requires a lot of engagement with physical perspectives, entirely online.

Experience

When the pandemic situation started to unfold, the teachers decided that the theme of the year would be “social closeness in times of physical distancing.” The theme was chosen both for its timely relevance and because it would make working online throughout the project easier. The design teams ended up working mostly online, developing a variety of ways to deal with their own physical distancing.

To investigate their domains, most teams ended up organizing semi-staged studies. For example, one team asked couples living apart to watch films together. The team members would visit an acquaintance who was in a distance relationship to observe them watching a video together with their distant partner. Another team carried out autoethnographic investigations of their own practices of connecting remotely to their parents in their home countries, a study that grew into also asking the parents to keep diaries.

In previous years, each team had worked together on one single design. This year, to make it possible for teams to meet online, the course asked for individual designs. Teams would still work together on selecting and investigating a domain for their designs, and near the end of the course on analyzing their designs toward a more generic design concept [1], of which their designs would be examples, together forming a portfolio [2]. Doing individual designs while working in a team worked exceedingly well. The combination allowed for the diversity and creativity within the team to come through, while still allowing them to work together with domain and design concepts. Team members were also motivated and able to give insightful and constructive critique to each other. It did, however, create a lot of work for the students, and also meant that the final designs could not be as polished as in previous years.

The course includes a bodystorming session as a very important part of the design ideation phase. The session introduces the students to embodied design ideation using resources such as their own bodies, the space, and various design materials [3]. In this remote version of the course, participants were connected only through their individual video streams. Since nobody, including the teachers, could say if this would work, the whole class did a small experiment a week in advance. Each team planned and executed a brief bodystorming exercise, with the sole requirement that participants would not be constrained by having to look at their screens, to increase the ideation possibilities for bodily and spatial interaction. It was noted that having a facilitator give verbal instructions during bodystorming was a good way of achieving this. The facilitator gave instructions to, for example, explore materials and move around, reminding participants of design possibilities beyond the screen. That bodystorming was performed in each person’s home environment was also an important, and for one team, crucial, resource. The home provided personally meaningful materials and familiar spaces. Challenges in online bodystorming related to difficulties in observing participants, as they could easily move away from the camera. Several teams therefore decided to collect written and hand-drawn input from the participants throughout the session. This also allowed participants to convey a private and first-person perspective on their ideas.

The most challenging aspect of the design project was testing with users. While students could use Arduinos, sensors, and actuators to develop prototypes, it became difficult or impossible to ship these to test participants. Testing designs within the team became a go-to method. But most teams also employed a kind of user-assisted testing: They recruited external participants, and these were instructed in both how to re-create aspects of the prototype and how to simulate its use. Some participants were recruited in pairs and took turns simulating the prototype for the other. Since most teams worked with the same external participants throughout, this allowed testers to become co-creators, as design intentions needed to be both communicated and shared. Testing was accompanied by “think-aloud” responses and semi-structured interviews carried out over videoconferencing, as ways of gathering feedback.

In previous years, the final demonstrations of the designs were done onsite, at relevant locations for the chosen domains, giving teachers and other students a chance to get a feel for the designs in action. This year, these demonstrations were done over videoconferencing. One method that worked well for demonstration was a kind of distributed use case scenarios setup. These were small, distributed theater performances wherein the team members enacted a usage situation by taking different roles in a distributed setting. The use of videoconferencing allowed students to choose their locations carefully, and even get help from friends and family in enacting their designs. In these demos, one person would typically act as narrator/facilitator to make the situation clear for the audience. On one occasion, a family member had been recruited for this role, holding the camera and instructing the other members of the family. Since prototypes were typically only in one place, demonstrators would sometimes ask the audience members to recruit objects in their close vicinity and use them as placeholders for the prototypes.

Discussion

Going online in the context of a pandemic is not an ideal situation. Many of the problems encountered had to be solved by the students, and the teachers were constantly amazed by their creativity and initiative. Giving students great flexibility was crucial in making this work. Teachers also continuously reminded students to look for opportunities in the situation, rather than get stuck in problems such as lack of access to users or technology. But the setup also increased the workload in an already very stressful time. Providing greater flexibility means that some of the responsibilities for planning that normally fall on teachers are pushed to students, such as in the teams needed to practice both their bodystorming and final demonstration in advance. 

While it is important to not let the exceptional become the norm, our experiences show that it is not impossible to move even a physical design project online. We have highlighted some strategies and techniques that worked well for us. While physical prototyping is not easily moved online and much of the point of Arduino programming was lost, low prototype fidelity instead allowed for an increased focus on usage situations and material qualities. Finally, while the intimate nature of everyone participating from their home environments is not without its challenges, it turned into one of the most important design resources for the students of this course.

Endnotes

1. Löwgren, J. Annotated portfolios and other forms of intermediate-level knowledge. Interactions 20, 1 (2013), 30–34.

2. Gaver, B. and Bowers, J. Annotated portfolios. Interactions 19, 4 (2012), 40–49.

3. Segura, E.M., Vidal, L.T., and Rostami, A. Bodystorming for movement-based interaction design. Human Technology 12, 2 (2016).



Posted in: Covid-19 on Mon, August 03, 2020 - 9:22:03

Annika Waern

Annika Waern is professor and chair of human-computer interaction at Uppsala University. Her research focuses on technology-supported play and playful interactions in physical space. annika.waern@im.uu.se
View All Annika Waern's Posts

Andreas Bergqvist

Andreas Bergqvist is a lecturer in HCI at Uppsala University, Sweden, with a background in software development and game design. His research interests relate to programming as an expressive medium, empowerment in technology enhanced play, and agency in games. andreas.bergqvist@im.uu.se
View All Andreas Bergqvist's Posts

Shuang Feng

Shuang Feng is a master’s student human-computer interaction at Uppsala University. Shuang.Feng.4464@student.uu.se
View All Shuang Feng's Posts

Nikolay Georgiev

Nikolay Georgiev is a master’s student human-computer interaction at Uppsala University. He has a bachelor's degree in engineering physics. georgiev.nick.i@gmail.com
View All Nikolay Georgiev's Posts

Karan Manjunath

Karan Manjunath is a master’s student human-computer interaction at Uppsala University. His main interest is user experience and user interface design. Karan.Manjunath.4399@student.uu.se
View All Karan Manjunath's Posts

Alessandra Semeraro

Alessandra Semeraro is a master’s student in human-computer interaction at Uppsala University, Sweden. She has a bachelor’s degree in computer science and aspires to a future university career. semeraro.alessandra@gmail.com
View All Alessandra Semeraro's Posts

Ruochen Wang

Ruochen Wang is a master’s student in human-computer interaction at Uppsala University. His research interest focuses on game interaction and humanity. Ruochen.Wang.3317@student.uu.se
View All Ruochen Wang's Posts

Laia Turmo Vidal

Laia Turmo Vidal is a Ph.D. candidate in interaction design and HCI at Uppsala University, Sweden. In her research, she investigates how to support movement teaching and learning through interactive technology. Her research interests include embodied design, cooperative social computing, and play. laia.turmo@im.uu.se
View All Laia Turmo Vidal's Posts



Post Comment


@whitelist@acm.org (2020 11 19)

Best Economics Tutor in Singapore.